В книге последовательно излагается метод континуального интеграла, который в настоящее время является одним из основных рабочих методов квантовой теории поля. Дается определение континуального интеграла как математического объекта, показана эквивалентность фейнмановской формулировки квантовой механики формулировке Шредингера Гейзенберга, демонстрируются основные математические приемы работы с континуальным интегралом, его применение для получения функций Грина и S-матрицы. Большое внимание уделяется особенностям квантования калибровочных полей методом континуального интегрирования, сопоставляются различные подходы к квантованию калибровочных полей, обсуждаются нерешенные проблемы построения квантовой теории калибровочных полей, в том числе на примере гравитации. В книге используется материал, изложенный в оригинальных статьях и до настоящего времени не вошедший в учебники и монографии.
Для студентов старших курсов и аспирантов, специализирующихся в области квантовой теории поля. Может быть полезна также для преподавателей и научных работников, желающих познакомиться с техникой континуального интегрирования.