В монографии развивается новый асимптотический метод получения квазиклассических решений многомерных нелинейных уравнений. В качестве примеров рассматриваются нелинейные уравнения квантовой механики, уравнения кристаллической решетки и др. Полученные решения локализованы в окрестности некоторых кривых или поверхностей. Конструкция таких решений опирается на изложенный в I части гамильтонов формализм механики узких пучков и известные солитонные решения соответствующих двумерных задач.
Книга предназначена научным работникам в области математики и ее приложений, а также физикам и механикам.
Содержание:
1. Уравнения и задачи механики узких пучков;
2. Гамильтонов формализм узких пучков;
3. Приближенные решения нестационарного уравнения переноса;
4. Стационарное уравнения Гамильтона-Якоби;
5. Стационарные уравнения переноса;
6. Комплексный гамильтонов формализм компактных (циклических) пучков;
7. Уравнения с кубичными нелинейностями;
8. Сингулярные асимптотические решения нелинейных уравнений;
9. Уравнение типа уравнения Sine-Гордона;
10. Уравнение Sine-Гордона и Кадомцева-Петвиашвили;
11. Уравнение кристалла.
Дополнительно: Уважаемые покупатели прошу обратить внимание, что в данный момент самовывоз книг не возможен. Книги отправляю почтой России после предоплаты.
Дополнительно: ГРАЖДАНЕ ПОКУПАТЕЛИ! ПРЕЖДЕ, ЧЕМ ОФОРМЛЯТЬ ЗАКАЗ, ПРОЧТИТЕ УСЛОВИЯ!
Если вы особо чувствительны к состоянию книг, то прежде чем, оформлять заказ, выйдите на связь с продавцом, воспользовавшись функцией "СПРОСИТЬ" (только для зарегистрированных пользователей), поскольку ваше понимание "хорошего" и "отличного" может не совпадать с таковым пониманием продавца.
Встреча по договоренности происходит б... [подробнее]